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Introduction

One of the main goals of a drug-discovery project is to devel-
op highly selective compounds for a therapeutically relevant
target while avoiding side effects or adverse drug reactions
(ADRs). There are a few exceptional cases for which the design
of compounds with multiple activities in a given pathway may
be desirable. These include some well-known examples in de-
pression, schizophrenia,[1] and Alzheimer’s disease,[2] but also in
oncology,[3] showing that a weaker selectivity is key to the effi-
cacy of a significant number of approved drugs. However, pro-
miscuity in these cases is often limited to a particular subclass
of targets (for example, kinases). New paradigms to selectively
modulate several molecular targets are also emerging, despite
the challenge of this multitarget approach for medicinal chem-
ists.[4–6] Compounds with “off-target” activity (effects at various
targets unrelated to the therapeutic target) carry ADR liabilities
and could severely restrict the use of the drug or prevent its
entry into the clinic. Therefore, there is clear interest to evalu-
ate compound promiscuity or selectivity at the earliest possible
phase of drug discovery.
As described earlier, a broad panel of in vitro safety pharma-

cology profiling assays have been implemented at Novartis to
screen compounds for potential unwanted or adverse effects
well before the first clinical stage.[7,8] This in vitro safety phar-
macology profile is essentially composed of noncellular bind-
ing assays that target a diverse set of receptors (GPCRs highly
represented), nuclear receptors, transporters, enzymes, and
binding sites on ion channels with well-documented associa-
tions to clinical ADRs.[9,10] The in vitro safety pharmacology
assay set is used as an initial screen of compound scaffolds
during lead selection and early optimization. If selected com-
pounds hit a particular unwanted target, regular testing of
that target may need to be incorporated into the drug-discov-
ery project flow chart as a possible source of clinical liability to
be addressed regularly. If the initial screen is clean, the safety
pharmacology screen is used only at decision points where
changes in chemical design might introduce new unexpected

liabilities. The project team integrates the results of this in vitro
safety profile together with the results on the primary target,
physicochemical, and ADME properties for making decisions
on the optimization of further compounds. The assumption is
that increased selectivity for the desired target correlates with
the decrease of ADR frequency resulting from binding to “off-
target” binding sites: the unwanted effects that may arise from
binding to the secondary targets selected in this in vitro safety
profile. To obtain a reliable answer in all the profiling assays,
full IC50 determinations are systematically carried out, and a
large set of profiling data is now available.
We have already shown, by using a large set of safety phar-

macology profiling data, that the percentage of compounds
displaying promiscuous properties during the lead-optimiza-
tion stage was significant, and in the range of 20–30% (accord-
ing to the cut-off used).[7] This finding supports the importance
of assessing compound promiscuity early in the drug-discovery
process. In the present study, we further expanded this set of
data to 3138 compounds tested on up to 79 targets, all select-
ed for their known link with potential safety issues.
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This study describes a method for mining and modeling binding
data obtained from a large panel of targets (in vitro safety phar-
macology) to distinguish differences between promiscuous and
selective compounds. Two na>ve Bayes models for promiscuity
and selectivity were generated and validated on a test set as well

as publicly available drug databases. The model shows a higher
score (lower promiscuity) for marketed drugs than for com-
pounds in early development or compounds that failed during
clinical development. Such models can be used in triaging high-
throughput screening data or for lead optimization.
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Some recent articles describe in silico approaches to discuss
promiscuity and its linkage to side effects (using mainly the
Cerep Bioprint dataset).[11–15] Besides the pharmacological activ-
ity associated with competitive binding, promiscuity can also
be linked to some physicochemical properties of molecules
such as aggregation.[16]

We compared the chemical properties of the com-
pounds showing promiscuous properties in this
panel of assays with the selective compounds in
order to design a naKve Bayesian model[17–20] that can
predict compound promiscuity or selectivity. Herein
we describe the setup and validation of this model
and its potential use in the drug-discovery process.

Results and Discussion

Dataset and hit-rate parameters

We used a total of 3138 compounds that have been
tested in at least 50 out of 79 assays. The targets
tested are mainly GPCRs (serotoninergic, adrenergic,
dopaminergic, muscarinic, neurokinin, opiate, hista-
minic), but also include ion channels (calcium N- and
L-type, potassium), transporters (DAT, NET, 5-HT, ade-
nosine), nuclear receptors (glucocorticoid, estrogen,
progesterone), and enzymes (COX-1, COX-2, PDE4,
PDE3). The full panel of targets can be found in work pub-
lished previously.[7]

The data were split randomly into 2512 compounds for
modeling and 626 compounds for testing the models. In addi-
tion to the test set, 119 known drugs were also profiled and
kept separate for testing the models. All sets were checked vis-
ually to ensure that no chemical classes were over-represented
in one set or the other.
The target hit-rate parameter (THR) was defined in order to

assign to each compound its selectivity or promiscuity across
the whole panel of assays. THR is defined as the ratio of the
number of targets hit (>50% inhibition) by a compound to
the number of targets tested at a given concentration.
In the training and test sets, the compounds were flagged

according to their target hit-rate at 10 mm (THR10). Compounds
with THR10�20% were flagged
as promiscuous (P) ; 604 (24%) P
compounds were found. Com-
pounds with THR10�5% were
flagged as selective hits (S) ; 1171
(47%) S compounds were identi-
fied. Other compounds with
THR10 values between 5 and
20% were flagged as medium
promiscuous (MP); 737 (29%)
MP compounds were found.
Overall, a considerable

number of compounds lacking
specificity (“promiscuous com-
pounds”) were found, even if the
vast majority of these were at

the lead-optimization stage. Activity below 5 mm was shown
by 21% of the compounds toward at least eight different tar-
gets (Figure 1). This number is biased, however, because the
projects that encounter pharmacological promiscuity submit
more compounds than others. Nevertheless, these data show

the importance of assessing the pharmacological profile of the
compounds well before the last steps of the drug-discovery
process.

Data analysis

The chemical profiles of all the promiscuous compounds were
compared with the selective compounds by using classical 2D
molecular descriptors. The mean values and standard devia-
tions are reported in Table 1.
The calculated logP (AlogP) and molecular weight (Mr) were

significantly higher for the promiscuous compounds than for
the selective compounds. Recently, Hopkins et al.[4] showed an
inverse correlation between Mr and promiscuity. The authors’
explanation for the correlation was that Mr could be a gross es-

Figure 1. Distribution of compounds by their target hit-rate THR for various IC50 thresh-
olds; gray: IC50<1 mm, white: IC50<3 mm, black: IC50<10 mm.

Table 1. Average and standard deviation (SD) of calculated molecular descriptors.[a]

Descriptors All P MP S
Mean SD Mean SD Mean SD Mean SD

Mr 460 142 493 99 472 177 436 130
AlogP 3.7 1.7 4.4 1.3 3.9 1.7 3.3 1.8
H-bond acceptors 5.2 2.4 5.4 2.1 5.2 3.1 5.2 2.1
H-bond donors 2.0 1.8 2.1 1.5 2.1 2.7 1.9 1.3
O count 3.0 2.2 2.5 1.7 2.8 2.6 3.3 2.0
N count 4.0 2.3 4.6 2.0 4.2 2.8 3.6 1.9
Rotatable bonds 7.0 4.2 7.7 3.0 7.2 5.7 6.6 3.5
Ring count 4.0 1.3 4.6 1.2 4.3 1.2 3.6 1.2
Ring assemblies 3.2 1.1 3.6 0.9 3.4 1.1 2.8 1.0
Terminal rotomers 0.4 0.7 0.2 0.5 0.3 0.7 0.6 0.7
Chain assemblies 4.9 2.0 5.3 1.8 4.8 1.9 4.7 2.1

[a] P: promiscuous compounds, MP=medium-promiscuous compounds, S: selective compounds.
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timate for complexity defined in
Hann’s model.[21] Indeed, the
model states that more complex
molecules are more active be-
cause they lead to a larger
number of specific binding
events. In our case, compounds
with higher Mr exhibit, on aver-
age, higher promiscuity
(Figure 2), at least for com-
pounds with Mr<600 Da. The
same correlation was observed if
promiscuity was defined with
THR1 or THR3 (IC50<1 mmol or
3 mmol).
The number of nitrogen

atoms was also higher for pro-
miscuous compounds, whereas
the number of oxygen atoms
was lower than for nonpromisc-
uous compounds. The number
of H-bond donor or acceptor

atoms did not differ significantly between the compound
groups.
To further investigate the influence of O and N atoms, func-

tional groups were counted for each set of compounds. The
results are reported in Table 2. It appears that the indole sub-
structure is highly represented in promiscuous compounds rel-
ative to selective compounds. Furan and piperazine rings also
have a greater presence in promiscuous compounds. As the
profiling panel contains a large number of GPCR targets, previ-
ously published work suggested to find such privileged sub-
structures in promiscuous compounds.[22–24]

Other substructures were checked, but were not significantly
prominent in one group or the other. Carboxylic acids show a

high selectivity that is probably due to the possible negative
charge of the carboxylate group which can lead to unfavorable
interactions with most targets of the current in vitro safety
panel. Its benefit for avoiding hERG channel binding was re-
cently shown as a magic SAR switch[25] (other acidic groups
such as tetrazole or sulfonamide do not show such a large dif-
ference). In combining the differences observed above be-
tween promiscuous (P) and selective (S) compounds, we can
confirm that small hydrophilic compounds with carboxylic
groups are less promiscuous in the profiling panel, and that
bulky and hydrophobic amines are most likely to be promiscu-
ous.

Na.ve Bayesian (NB) modeling

To generalize these observations, we used naKve Bayesian mod-
eling, a technique that compares frequencies of features be-
tween selective and promiscuous sets of compounds. Bayesian
classification has been applied in many studies and was recent-
ly compared with other machine-learning techniques.[18–21]

To classify promiscuous from selective compounds, we used
the Bayesian modeling protocol available in Pipeline Pilot (Sci-
Tegic).[26] A large number of models were built using different
sets of descriptors. We chose mainly to use structural finger-
prints and classical descriptors used for the definition of gener-
al drug-likeness. We also used descriptors that were found in
the above structure–activity relationships for promiscuity
(Tables 1 and 2). The outcome of such naKve Bayesian models
is the normalized probability of features present in the com-
pound training set. For instance, the fingerprint of a carboxylic
acid will contribute largely to the probability of selective com-
pounds, as mentioned above.

Figure 2. Correlation of molecular weight with promiscuity ; black: promiscu-
ous (P), gray: medium promiscuous (MP), white: selective (S).

Table 2. Functional group frequency.[a]

Functional Group Frequency Percentage
P MP S P [%] MP [%] S [%] S�P [%][b]

Benzoic acid 0 8 50 0 14 86 86
Aliphatic carboxylic acid 8 48 208 3 18 79 76
Nitro 2 6 21 7 21 72 66
Sulfone 6 7 36 12 14 73 61
Nitrile 20 37 99 13 24 63 51
Sulfonamide 53 91 216 15 25 60 45
Ester 25 39 78 18 27 55 37
Primary amine 38 39 95 22 23 55 33
Imidazole 52 98 134 18 35 47 29
Pyrazole 31 44 71 21 30 49 27
Hydroxy in R�OH 94 142 216 21 31 48 27
Amide 345 413 701 24 28 48 24
Tetrazole 7 25 15 15 53 32 17
Secondary amine 488 538 726 28 31 41 14
Tertiary amine 451 458 530 31 32 37 5
Piperidine 155 131 135 37 31 32 �5
Piperazine 148 122 79 42 35 23 �20
Indole 174 114 72 48 32 20 �28
Furan 56 20 15 62 22 16 �45

[a] P: promiscuous compounds, MP=medium-promiscuous compounds, S: selective compounds. [b] Percent
difference between selective and promiscuous compounds.
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To compare the predictabilities of such models, a test set
was used to predict promiscuous and selective compounds.
The specificity and sensitivity of each model is reported in
Table 3. The optimal naKve Bayesian probability threshold was

determined by plotting selectivity (SE) and specificity (SP) for
different scores applied to the test set. In general, the models
trained on only SciTegic fingerprints (models 1 and 2) perform
better than the other models.
The best models were applied to the test set, and the result

of the top-ranked promiscuous or selective compounds are re-
ported in Tables 4 and 5. A relatively high enrichment was ob-
served for both models, although the selectivity model ap-
pears more accurate than the promiscuity model. Combining
the models did not improve their sensitivity.

Application to known drugs

We included 119 known drugs in the test set. Of these, 71%
were highly selective, 13% were medium-promiscuous, and
17% were highly promiscuous. The top-ranking scores for
tested drugs are reported in
Tables 6 and 7. The whole panel
of compounds without the
known drugs have a distribution
of 46, 28, and 25%, respectively,
for S, MP, and P. The majority of
those compounds are “lead-like”
or are in the “hit-to-lead” phase.
As expected, the drug panel
seems to have a higher number
of selective compounds relative
to the leads. Also as expected,
most of the drugs predicted as
promiscuous by the model are
CNS drugs (Tables 8 and 9).

Promiscuity and attrition rate

The high attrition rate of new chemical entities (NCEs) in pre-
clinical and clinical phases is due to many factors. According to
Kola and Landis,[27] NCEs fail mainly due to insufficient efficacy,
bioavailability, safety, toxicological issues, and economic rea-
sons. As all these factors are somehow interrelated, a less solu-
ble drug might be less bioactive and thus less efficient. The at-
trition rate also depends on the discovery stage and the thera-
peutic area. In the areas of CNS and oncology, it seems that

Table 3. Sensitivity and specificity of the naKve Bayesian (NB) classifiers.

Model[a] NB Probability[b] Sensitivity Specificity

1. NB for Selectivity �22.0 0.84 0.86
2. NB for Promiscuity 4.0 0.87 0.83
3. NB for Selectivity �1.5 0.76 0.78
4. NB for Promiscuity 1.0 0.81 0.78

[a] Models 1 and 2 use fingerprint descriptors, and models 3 and 4 use
property-based descriptors. [b] Optimal threshold.

Table 4. Top-ranking scores with NB model 1 applied to the test set.

Model 1 for Selectivity S [%] MP [%] P [%]

Top 5% 97 3 0
Top 10% 97 3 0
Top 20% 89 11 0
Top 30% 85 14 1
No Ranking 46 28 25

Table 6. Top-ranking scores with NB model 1 applied to known drugs
set.

Model 1 for Selectivity S [%] MP [%] P [%]

Top 5% 100 0 0
Top 10% 100 0 0
Top 20% 92 8 0
Top 30% 92 6 3
No Ranking 71 13 17

Table 7. Top-ranking scores with NB model 2 applied to known drugs
set.

Model 2 for Promiscuity S [%] MP [%] P [%]

Top 5% 50 0 50
Top 10% 25 17 58
Top 20% 38 13 50
Top 30% 42 22 36
No Ranking 71 13 17

Table 8. Examples of the best predicted as selective drugs.

Drug Model 1
Score

Model 2
Score

Exptl
THR10 [%]

Activity Class

Cyclosporin A 34.7 �58.28 1.8 Immunosuppressive
Finasteride 11.4 �24.0 0.0 Antiandrogenic
Eprosartan 11.2 �42.4 1.5 Antihypertensive
Bumetanide 11.1 �39.5 0.0 Diuretic
Amoxicillin 10.6 �32.7 0.0 Antibiotic
Folic acid 10.1 �27.0 2.9 (Vitamin B)
Enalapril 9.0 �32.6 0.0 Antihypertensive
Acarbose 8.4 �14.7 0.0 Antidiabetic
Bicalutamide 8.1 �17.6 0.0 Anticancer
Hydrochlorothiazide 8.1 �20.8 1.4 Antihypertensive

Table 5. Top-ranking scores with NB model 2 applied to the test set.

Model 2 for Promiscuity S [%] MP [%] P [%]

Top 5% 0 6 94
Top 10% 5 6 89
Top 20% 6 20 74
Top 30% 14 24 61
No Ranking 46 28 25
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compounds tend to fail more than in other therapeutic
areas.[27]

To investigate whether promiscuity correlates with the attri-
tion rate of compounds during development, we applied the
models (models 1 and 2) to our in-house database, where all
compounds are represented and classified as 1) terminated,
2) in development, or 3) in clinical use or launched. The results
of the top best score of the database are shown in Figure 3. In-
terestingly, compounds in terminated programs are ranked
15% above the average in the promiscuity model and 15%
below the average in the selectivity model. We cannot link
these observations directly to real safety pharmacology be-
cause we do not have access to the reasons for the termina-
tions. However, it is clear that a lower proportion of com-
pounds predicted promiscuous by the model reached the
clinic.
To further investigate this observation, we applied the

models to the MDL Drug Data Report database (MDDR)[28] to
compounds in different drug-dis-
covery phases. The database was
previously filtered free of any an-
tipsychotic drugs. Because anti-
psychotic drugs are usually
known as promiscuous,[1] we
scored them separately, and the
results of their average scores
are listed in Table 10. For both
promiscuity models 2 and 4, the
average score for promiscuity
tends to decrease from the lead-
optimization phase to launch
phase. The trend is the opposite
for selectivity models 1 and 3
(Table 11).
Because the number of com-

pounds in each phase is quite
different, the comparison of
their scores is difficult. Therefore,
we decided to decrease the
number of compounds random-
ly for each phase to fit the
lowest number of compounds in

phase III (in the case of non-anti-
psychotic drugs, the lowest
number was 250 for compounds
in phase III). The resulting data-
set of 1500 compounds (250
from each phase) was then
scored. Models 3 and 4 were the
best to confirm a logical trend
from lead optimization to
launched drugs. Indeed, as
shown in Figure 4, 20% of the
best-scored compounds were
checked for the phase in which

Table 9. Examples of highly predicted promiscuous drugs.

Drug Model 1
Score

Model 2
Score

Exptl
THR10 [%]

Activity Class

Sumatriptan �30.03 13.32 3.4 Serotoninergic
Rizatriptan �27.06 10.93 3.1 Serotoninergic
Carvedilol �19.63 10.34 41.7 Beta blocker
Serzone �15.6 9.41 42.9 Antidepressant
Risperidone �18.18 7.72 27.4 Neuroleptic
Iprindole �11.32 5.51 30.8 Antidepressant
Chlorpheniramine �16.35 5.39 16.4 Antihistaminic
Doxepin �11.72 4.63 39.7 Antidepressant
Diphenhydramine �6.36 3.73 26.2 Antihistaminic

Figure 3. Top 20% ranked compounds for different stages of drug discovery
at Novartis ; white: top 20% ranked with promiscuity model, gray: top 20%
ranked with selectivity model, a~a : 20% picked randomly.

Table 10. Average NB scores for MDDR antipsychotic compounds.

Phase Total
Antipsychotic

Drugs

Model 1 for
Selectivity

Model 2 for
Promiscuity

Model 3 for
Selectivity

Model 4 for
Promiscuity

Lead optimization 21594 �7.6 �5.9 0.2 �1.7
Preclinical 1389 �6.1 �7.8 0.4 �2.2
Phase I 107 �5.0 �7.9 0.6 �2.4
Phase II 182 �8.1 �6.8 0.4 �2.0
Phase III 47 �5.5 �7.2 0.7 �2.7
Launched 273 �4.5 �8.8 1.1 �3.4

Table 11. Average NB scores for MDDR non-antipsychotic compounds.

Phase Total
Other
Drugs

Model 1 for
Selectivity

Model 2 for
Promiscuity

Model 3 for
Selectivity

Model 4 for
Promiscuity

Lead optimization 121898 �0.7 15.3 0.3 2.0
Preclinical 7572 �0.6 15.8 0.4 2.3
Phase I 616 �0.5 17.0 0.5 2.5
Phase II 830 �0.3 17.1 0.6 2.6
Phase III 250 0.2 15.9 0.8 3.1
Launched 863 �0.1 14.6 1.1 3.5
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they belong, and the average scores suggest the trend that
more compounds predicted promiscuous are found in the
lead-optimization phase than in the launched phase. On the
other hand, more compounds predicted selective are in the
launched phase than in the lead-optimization phase. For com-
parison, we also picked 20% of the compounds randomly
without ranking them.

Conclusions

In vitro safety pharmacology profiling is becoming an essential
tool for successful drug development. The observation that
compounds are active against multiple biological targets is a
property often observed for compounds identified at the lead-
selection phase of a drug-discovery program.
High-throughput screening of targets with libraries of com-

pounds numbering in the millions inevitably identifies a signifi-
cant number of promiscuous compounds. The selection of a
scaffold at the early phase of drug discovery is now based on
broad-scale profiling for drug-like characteristics, including a
minimal occurrence of ADRs. This can be done by introducing
the in vitro safety pharmacology profile, as has been reported
by several research groups.[1,7,8]

By mining the profiling data, we were able to define some
general rules and structure–activity relationships to distinguish
between promiscuous and selective compounds. We have de-
veloped a simple scoring model for promiscuity and selectivity
based on naKve Bayesian classification. Interestingly, when ap-
plied to a large database of compounds at different phases of
the drug-discovery process, the model shows a higher score
(lower promiscuity) for marketed drugs than for compounds in
early development or those that failed during clinical develop-
ment. Although the failure of drugs can originate from various

factors, we found a clear correlation between the promiscuity
and attrition rate of compounds. This demonstrates the useful-
ness of this predictive model of promiscuity and the impor-
tance of having a “clean profile” in the in vitro safety pharma-
cology panel. Such a model can be used for virtual screening
and lead optimization.

Computational Section

From the training set of 2512 compounds, four naKve Bayesian
classifiers were built using Pipeline Pilot software: two models
for promiscuous and two models for selective compounds. The
molecular descriptors used for models 1 and 2 were a combi-
nation of chemical fingerprints such as extended-connectivity
fingerprints (ECFP_4) and functional-connectivity fingerprints
(FCFP_4).[29–31] The combination of both fingerprints gives the
best sensitivity (SE) and specificity (SP) (see definitions below).
For models 3 and 4, we used mainly physicochemical descrip-
tors such as calculated logP (AlogP), molecular weight (Mr),
number of H-bond donor and acceptor atoms, and number of
rotatable bonds. We also used the following descriptors that
have a large difference, on average, between promiscuous and
selective compounds: number of ring systems, number of ni-
trogen atoms, presence of carboxylic groups, presence of
indole rings, number of terminal rotomers.

The output from the naKve Bayesian is a normalized probability,
which is a standard Laplacian-modified Bayesian score. For the
training set of molecules (promiscuous), the descriptors are cal-
culated (chemical fingerprints or physicochemical properties).
The Bayesian statistics are then applied to assign the probabili-
ty for each individual descriptor (fingerprint bit or property
range) of a molecule’s likelihood to be a member of the pro-
miscuous or selective class. The Bayesian score is a measure of
how different this is from the hit rate as a whole, which is the
ratio that would be expected if the features occur at random
across the promiscuous and selective compounds. The score
also takes into account the total number of occurrences of the
feature, ensuring more weight is placed on features that are
observed more often and less weight on those for which there
are only very few occurrences.

To validate the classification models, the sensitivity (SE) and
specificity (SP) of an individual model were evaluated by the
equations:

SEi ¼ TPi=ðTPi þ FNiÞ ð1Þ

SPi ¼ TNi=ðTNi þ FPiÞ ð2Þ

for which TPi, TNi, FPi, and FNi represent the number of true
positives, true negatives, false positives, and false negatives, re-
spectively. TPi, TNi, FPi, and FNi are the four different possible
outcomes of a single prediction for a two-class case with
classes “1” (“yes”) and “0” (“no”). A false positive is when the
outcome is incorrectly classified as “yes” (or “positive”), when it
is in fact “no” (or “negative”). A false negative is when the out-
come is incorrectly classified as negative when it is, in fact,

Figure 4. Top 20% best-scored compounds in MDDR after filtering antipsy-
chotic drugs; white: top 20% ranked with promiscuity model, gray: top
20% ranked with selectivity model, a~a : 20% picked randomly.
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positive. True positives and true negatives are clearly correct
classifications.
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